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Deterministic point processes generated by threshold crossings: Dynamics reconstruction
and chaos control
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~Received 6 September 1996!

We consider chaotic point processes generated by threshold crossings in deterministic dynamical systems.
Specifically, we assume that an event occurs every time a scalar function of a continuous chaotic trajectory
crosses a preset threshold from a given direction. It is shown that, although the times between successive
crossings, called interspike intervals here, are not sufficient to fully reconstruct the global dynamics of the
original continuous system, they nevertheless provide enough information for an estimate of dynamical invari-
ants such as correlation dimension. In addition, it is argued that, with a suitably chosen threshold, converting
a continuous trajectory to an interspike interval time series preserves periodic orbit information and facilitates
the implementation and achievement of chaos control. We demonstrate the ideas by conducting numerical
experiments on two systems: the Lorenz model and a coupled Duffing oscillator.@S1063-651X~97!03003-1#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Processes characterized by point events occurring in
are called point processes. Emissions from a radioac
source, action potentials in a nerve fiber, and traffic fl
passing through a designated location on the highway ar
examples of point processes. Other examples can be fou
@1#. In a point process, the main quantity of interest is
times between successive events, which we call inters
intervals, a term motivated by the neurobiological linkage.
some cases these intervals are the only observed variable
others, as we shall discuss later, it is advantageous to con
a continuous-time dynamics to a point process and make
of the resulting interspike intervals as a Poincare´ map gen-
erated discrete-time series.

Traditionally, point processes are studied within t
framework of stochastic processes@1#. In this paper we con-
sider point processes generated by deterministic chaotic
namics. For a given chaotic system there are various way
associating a point process with a continuous trajectory. F
lowing Preisslet al. @2#, we specify that an event occur
every time a scalar function of the system state crosse
preset threshold from a given direction.~Neurons employ a
similar mechanism to generate action potentials@3#.! An in-
tegrate and fire model is considered in@4#.

We investigate the following questions@5#. First, does the
interspike interval time series contain enough information
compute global dynamical invariants such as fractal dim
sions of the original system? Second, can we manipulate
dynamics of the system to achieve chaos control based s
on the use of interspike intervals? The second questio
motivated by the current interest of using chaos control te
niques to modify the behavior of biological systems@6#. We
address these questions by presenting the following resu
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~i! We identify the interspike intervals as the times b
tween successive crossings of some Poincare´ surface of sec-
tion in the original phase space by a chaotic trajectory. T
observation suggests that we should relate the propertie
the interspike interval time series to the dynamics of
original system on the Poincare´ surface of section.

~ii ! We show that the correlation dimension, as a meas
of the global dynamics, can be reliably estimated from
interspike interval time series using delay coordinates@7#
and the Grassberger-Procaccia procedure@8#. In particular,
the dimension of the original phase-space attractor is
tained by adding one to the value of the dimension calcula
directly from the interspike intervals.~Similar result was ob-
tained by Castro and Sauer@9#.! This result is in contrast to
the claim of Preisslet al. @2# that the correlation dimension
cannot be estimated from the interspike intervals.

~iii ! We point out that, with a properly chosen thresho
the interspike interval time series preserve information ab
desired periodic orbits. Specifically, the local dynamics n
a periodic orbit can be reconstructed from the interspike
tervals and the reconstructed local dynamics can be su
quently used to implement chaos control in the system
addition, we argue that, even in cases where we have ac
to the continuous-time series, it is useful to convert it to
train of interspike intervals to take advantage of their Po
carémap properties.

~iv! We demonstrate the above points numerically in t
systems: the Lorenz equations and a coupled Duffing os
lator.

II. THEORETICAL CONSIDERATIONS

A. Point process generation and Poincare´ surface of section

Consider an autonomous system@10# defined as

Ż5G~Z,p!, ~1!

where the dot denotes time derivative,ZPRk11, andp is a
control parameter. Letx5h(Z) denote a scalar observab
2397 © 1997 The American Physical Society
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2398 55MINGZHOU DING AND WEIMING YANG
function. Consider the plot ofx versust. We assume that an
event occurs every timex(t) upward~or downward! crosses
some predetermined thresholdx5xc ~see Fig. 1!. The times
I n between the (n21)th andnth events are called interspik
intervals and are the variable of interest for our purpose.

Now we argue that this interspike interval time ser
samples the dynamics of some Poincare´ map in the original
Z phase space. Specifically, at each upward crossing in
x versust plot, the conditionx5h(Z)5xc is met. This con-
dition defines ak-dimensional Poincare´ surface of section in
the originalZ space. ThusI n is also the time between th
(n21)th and thenth crossings of the section. Suppose w
parametrize this section by ak-dimensional vectorQ. Then,
the successive crossings of the plane from a given direc
by a chaotic trajectory give rise to a Poincare´ map

Qn5P~Qn21 ,p!. ~2!

Realizing that the intervalI n is uniquely determined by
Qn21, namely,

I n5F~Qn21!, ~3!

we can thus viewI n as a scalar measurement function of t
dynamical system defined by Eq.~2!. If this measuremen
function I n satisfies the genericity conditions of the embe
ding theorems in@11#, which is expected to be the case
practice, then the dynamics on the Poincare´ surface of sec-
tion can be reconstructed fromI n using the delay embeddin
technique @7#. An important characteristic of the recon
structed dynamics is the attractor’s correlation dimension
troduced below.

B. Definition of correlation dimension

Let us denote the observed interspike interval time se
as $I i% i51

N . Using delay coordinates we reconstruct
m-dimensional vector as

yn5$I n2m11 ,I n2m12 , . . . ,I n%. ~4!

The correlation integralCm(N,e) @8# is defined as

Cm~N,e!5
2

N~N21!(j51

N

(
i5 j11

N

Q~e2uyi2yj u!, ~5!

FIG. 1. Schematic illustration of interspike interval formatio
and the effect of parametric control.
he

n

-

-
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whereQ(x)51 for x.0 andQ(x)50 for x<0; e is the
distance parameter. Here the distance between two em
ding vectors is computed using the max-norm, namely,
distance equals the largest of the component differen
From the plot of logCm(N,e) versus loge, we locate a linear
scaling region for smalle and estimate the slope of the curv
over the linear region. This slope, denotedD̄2

(m) , is then
considered an estimate of the correlation dimensionD2

(m) of
the projection of the original attractor to them-dimensional
embedding space. IfD̄2

(m) , plotted as a function ofm,
reaches a plateau for a range of large enoughm values, the
plateaued valueD̄2 is taken to be an estimate of the tru
correlation dimensionD2 for the system. For a large enoug
data set it is shown that the plateau onset occurs at the v
of m that is just aboveD̄2 @12#.

Numerical results in Sec. III demonstrate that, when
plied to the interspike interval time series, the above pro
dure yields a well-defined correlation dimensionD2. Below
we consider how to relate this value ofD2 to the dimension
of the attractor in the original phase space.

C. Correlation dimension of the original attractor

Intuitively it is clear that, for a given threshold, the resu
ing interspike intervals miss some of the dynamical behav
occurring away from the threshold. In this sense one can
get a full dynamics reconstruction from the interspike int
vals. However, as mentioned earlier, this shortcoming d
not prevent us from reliably estimating key dynamical i
variants such as correlation dimension from interspike in
vals. In particular, the correlation dimension of the origin
phase-space attractor, denotedD2

O , relates toD2 as

D2
O5D211. ~6!

This formula maybe heuristically justified as follows. Co
sider two sets of dimensionsd1 andd2 in a w-dimensional
space. It is known that the dimensiondi of the intersection
between the two sets is given by@13#

di5d11d22w.

If we identify the original attractor’s dimension a
d15D2

O , the dimension of the Poincare´ surface of section as
d25k, and the dimension of the entire phase space
w5k11, then the dimension of the intersection set, which
what we measure from the interspike intervals,
D25di5D2

O1k2k215D2
O21. Rearranging terms give

us Eq.~6!.
As an illustration of the above argument, take the exam

of a periodic orbit in the original phase space. Being a c
tinuous curve, the dimension of this orbit is one. The cor
sponding interspike intervals are also periodic. In the de
reconstruction space we obtain a set of distinct points,
dimension of which is zero. Clearly, this result agrees w
Eq. ~6!. Numerical results on two chaotic examples confir
ing the discussion above are presented in Sec. III.
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D. Chaos control algorithm

In many cases of practical importance we are interes
not only in characterizing the dynamics of the chaotic attr
tor, but also in perturbing the system to obtain improv
performance. The field dealing with the second aspec
called controlling chaos@14,15#. The key observation here i
that embedded within a chaotic attractor are an infinite nu
ber of unstable periodic orbits. Depending on the need,
can choose to stabilize any of these orbits by applying ju
ciously chosen controls to an accessible system param
Because the target orbit is part of the natural dynamics,
control is often achieved with small perturbations.

Our goal is to show that, with a properly chosen thre
old, interspike intervals by threshold crossings preserve
riodic orbit information and can be used to exact chaos c
trol. In Fig. 1 we illustrate the effect of changing a contr
parameter denoted byp, around its nominal valuep* , at
each crossing of the threshold. Next we proceed to formu
a systematic control law for the parameter variations.
-
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only outline the main steps since the details of the derivat
have already been published elsewhere@16#.

Let T denote matrix transpose. Since the control is do
by changing the value ofp at every threshold crossing, w
need to introduce a (2m21)-dimensional expanded phas
space

Yn5~ I n2m11 ,I n2m12 , . . . ,I n ,pn2m11 ,

pn2m12 , . . . ,pn21)
T

@16,17# to accommodate both dynamical measurementsI i
and parameter changespi . Near an unstable fixed poin
Y*5(I * , . . . ,I * ,p* , . . . ,p* ), which we will focus on in
this paper, the dynamics can be linearly approximated a

Yn112Y*5Ã~Yn2Y* !1B̃~pn2p* !, ~7!

where
Ã51
0 1 ••• 0 0 ••• 0 0

••• ••• ••• ••• ••• ••• ••• •••

0 0 ••• 1 0 ••• 0 0

am21 am22 ••• a0 bm21 ••• b2 b1

0 0 ••• 0 1 ••• 0 0

••• ••• ••• ••• ••• ••• ••• •••

0 0 ••• 0 0 ••• 1 0

0 0 ••• 0 0 ••• 0 1

0 0 ••• 0 0 ••• 0 0

2
~2m21!3~2m21!

, B̃51
0

•••

0

b0

0

•••

0

1

2
~2m21!31

.
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In the above matricesai and bi are coefficients to be esti
mated from the time series.

To control we apply a suitable perturbatio
dpn5pn2p* , following each measurementI n , to keep the
dynamics within the stable subspace of the linear mapp
Eq. ~7!. For a fixed point withu unstable directions, the
control law governing the choice ofdpn is derived to be@16#

dpn52S (
k51

u
~lk!

u

~vk
TB̃! )

i51,iÞk

u

~lk2l i !

vk
TD dYn , ~8!

wherelk are the unstable eigenvalues ofÃ, ordered in de-
scending absolute value, and the contravariant unst
eigenvectorsvk are defined byÃ

Tvk5lkvk . It can be shown
that the elements ofvk are vk

( i )5( j51
i am2 j11lk

j2 i21 for
i,m, vk

(m)51, and vk
( i )5( j51

i2mbm2 j11lk
j1m2 i21 for i.m

@16#.
We emphasize that the above control law is based on t

series generated by a discrete map. Interspike intervals n
rally satisfy this condition. This feature removes the need
estimate a full matrix of elements from data. Instead,
g

le

e
tu-
o
e

only need to obtainai ’s andbi ’s for use in the control law.
Now we wish to argue that even in cases where we h
access to the continuous-time series it is useful to conve
to a train of interspike intervals before doing delay embe
ding reconstruction.

A common way of sampling a continuous-time series is
make measurements at equally spaced time intervals.
dynamics is then reconstructed using delay coordinates
we desire to base our control algorithm on some Poinc´
map in the reconstructed phase space, then, to obtain
surface of section, we need to choose a hyperplane in
reconstructed phase space as illustrated in Fig. 2. An im
diate problem is that since the sampled trajectory is disc
it inevitably misses the exact intersection with the chos
hyperplane. Often interpolation is needed to find the int
section point. This procedure introduces errors in the res
ing Poincare´ map. Clearly, such errors can be avoided us
a threshold device to convert precisely the continuous-t
series to an interspike interval series.

III. NUMERICAL RESULTS

Equipped with the theoretical tools prepared in the p
ceding section, we proceed to demonstrate the following
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2400 55MINGZHOU DING AND WEIMING YANG
points on two examples.~i! The correlation dimension is
well-defined quantity for an interspike interval train and
value can be related back to the dimension of the orig
chaotic attractor, and~ii ! interspike intervals preserve per
odic orbit information and can be used for implementi
chaos control.

A. Example 1: The Lorenz model

The Lorenz model is an autonomous system of th
coupled ordinary differential equations

ẋ52sx1sy,

ẏ52xz1rx2y,

ż5xy2bz,

wherer , s, andb are parameters. Lorenz@18# showed that,
when r5r *528, s510, andb58/3, the above system ex
hibits a chaotic attractor. Figure 3 shows thez variable as a
function of time. Letzc527 be the threshold. Using a tim
series of 20 000 interspike intervals we compute the corr
tion integrals according to Eq.~5!. The result is displayed in
Fig. 4. From Fig. 4 we estimate the correlation dimension
be D251.06. By adding one to this value we obtain t
well-known dimension of the Lorenz attractorD2

O52.06@8#.

FIG. 2. Schematic illustration showing the error in the Poinc´
map introduced by interpolation in the reconstruction space w
the time series is sampled at equally spaced intervals.A,B and
D,E are observed points.C andF are linear interpolation points
that may not be the intersection points of the actual trajectory w
the section.

FIG. 3. Continuousz time series from the Lorenz attractor.
l

e

a-

o

The result of applying the control law Eq.~8! is shown in
Fig. 5. Herem52 and r is used as the control parameter.
Figure 5~a! shows the interspike intervals before and after
the onset of control. Figure 5~b! is the corresponding
continuous-time series. We remark that the stabilized peri-
odic orbit in this case is thex-y orbit in @19#. This orbit is
symmetric with respect to the transformationx→2x and
y→2y. Strictly speaking, every repetition of this orbit in the

e
n

h

FIG. 4. log-log plot of correlation integrals using 20 000 inter-
spike intervals for the Lorenz attractor.

FIG. 5. Control result based on interspike intervals for the
Lorenz system.
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original phase space corresponds to two oscillations in
z variable. Because of the symmetry we are able to treat
a fixed point in the interspike interval time series.

B. Example 2: The coupled Duffing oscillator

Consider the following five-dimensional system of tw
coupled driven Duffing oscillators@16#:

ẍ11g ẋ11a~x1
32x1!1b1~x12x2!5p1sin~vt !,

~9!
ẍ21g ẋ21a~x2

32x2!1b2~x22x1!5psin~vt !.

For g50.632, a54.0, b150.1, b250.05, v52.1235,
p151.011, andp5p*5p1, Eq. ~9! exhibits a chaotic attrac
tor of dimensionD2

O53.3 @16#. Suppose that the continuou
time series we monitor here isx5x11x2, shown in Fig. 6.
We choose the threshold to bexc50. Using a time series o
50 000 interspike intervals we compute the correlation in
grals according to Eq.~5!. The result is displayed in Fig. 7
From the figure we estimate the correlation dimension to
D252.3. By adding one to this value we obtain the value
the original phase-space attractorD2

O53.3.
For a periodically forced system it is common to sam

the dynamics every period of the driving to obtain a Poinc´
map. The control of an unstable period-one orbit with t
stroboscopic sampling was done in@16#. Here we attempt to

FIG. 6. Continuousx5x11x2 time series for the coupled Duf
fing oscillator.

FIG. 7. log-log plot of correlation integrals using 50 000 inte
spike intervals for the coupled Duffing oscillator.
e
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-

e
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control the same orbit based on interspike intervals. The re-
sult is shown in Fig. 8, wherem54 andp is used as the
control parameter. We note that the periodic orbit stabilized
has two unstable directions. Figure 8~a! shows the interspike
intervals before and after we apply the control law Eq.~8!.
The corresponding continuous time series is displayed in Fig.
8~b!.

IV. CONCLUSION

We have considered point processes generated by thresh
old crossings in deterministic chaotic systems. We have
shown that the correlation dimension, as a global measure o
the dynamics, is well defined for interspike intervals and can
be estimated reliably in ideal situations where the data set is
large and relatively noise free. In addition, by relating the
interspike intervals to the times between successive crossing
of some Poincare´ surface of section, we have established the
connection between the correlation dimension from the inter-
spike intervals and that of the original chaotic attractor. At a
local level we have demonstrated that specific periodic orbit
information is preserved by interspike intervals and this in-
formation can be used to achieve chaos control.
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FIG. 8. Control result based on interspike intervals for the
coupled Duffing oscillator.
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