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Deterministic point processes generated by threshold crossings: Dynamics reconstruction
and chaos control
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We consider chaotic point processes generated by threshold crossings in deterministic dynamical systems.
Specifically, we assume that an event occurs every time a scalar function of a continuous chaotic trajectory
crosses a preset threshold from a given direction. It is shown that, although the times between successive
crossings, called interspike intervals here, are not sufficient to fully reconstruct the global dynamics of the
original continuous system, they nevertheless provide enough information for an estimate of dynamical invari-
ants such as correlation dimension. In addition, it is argued that, with a suitably chosen threshold, converting
a continuous trajectory to an interspike interval time series preserves periodic orbit information and facilitates
the implementation and achievement of chaos control. We demonstrate the ideas by conducting numerical
experiments on two systems: the Lorenz model and a coupled Duffing oscil@i@63-651X97)03003-1

PACS numbds): 05.45+b

[. INTRODUCTION (i) We identify the interspike intervals as the times be-
tween successive crossings of some Poinsaréace of sec-
Processes characterized by point events occurring in timéon in the original phase space by a chaotic trajectory. This
are called point processes. Emissions from a radioactivebservation suggests that we should relate the properties of
source, action potentials in a nerve fiber, and traffic flowthe interspike interval time series to the dynamics of the
passing through a designated location on the highway are afifiginal system on the Poincaseirface of section.
examples of point processes. Other examples can be found in (i) We show that the correlation dimension, as a measure

[1]. In a point process, the main quantity of interest is theOf the global dynamics, can be reliably estimated from the

times between successive events, which we call interspikifterspike interval time series using delay coordingfes

intervals, a term motivated by the neurobiological linkage. In"d the Grassberger-Procaccia proced8ie In particular,

some cases these intervals are the only observed variables.imﬁlgé”genaséz?n Ot);getootrr!%"\]/zllu%hgfsfr{;%?ﬁenfitgicégzcﬁa(t):é
others, as we shall discuss later, it is advantageous to conve y 9! S T
irectly from the interspike intervalgSimilar result was ob-

afct%ntlnuo%ts' tlmetdynqkmlqs tto a ?Omt proPc €ss and mak_e USSined py Castrq and Saugd].) This result is _in co'ntrast.to
of the resulting Interspike Intervais as a FoINCEr@p gen-  yhq claim of Preissét al. [2] that the correlation dimension
erated discrete-time series. , o cannot be estimated from the interspike intervals.

Traditionally, pomt_ processes are §tud|ed within the (i) We point out that, with a properly chosen threshold,
framework of stochastic processd. In this paper we con-  he interspike interval time series preserve information about
sider point processes generated by deterministic chaotic dyjesired periodic orbits. Specifically, the local dynamics near
namics. For a given chaotic system there are various ways @f periodic orbit can be reconstructed from the interspike in-
associating a point process with a continuous trajectory. Fokervals and the reconstructed local dynamics can be subse-
lowing Preisslet al. [2], we specify that an event occurs quently used to implement chaos control in the system. In
every time a scalar function of the system state crosses addition, we argue that, even in cases where we have access
preset threshold from a given directiofNeurons employ a to the continuous-time series, it is useful to convert it to a
similar mechanism to generate action potenti8ls) An in-  train of interspike intervals to take advantage of their Poin-
tegrate and fire model is considered[#. caremap properties.

We investigate the following questiohs]. First, does the (iv) We demonstrate the above points numerically in two
interspike interval time series contain enough information tosystems: the Lorenz equations and a coupled Duffing oscil-
compute global dynamical invariants such as fractal dimentator.
sions of the original system? Second, can we manipulate the
dynamics of the system to achieve chaos control based solely Il. THEORETICAL CONSIDERATIONS
on the use of interspike intervals? The second question is i
motivated by the current interest of using chaos control tech- A- Point process generation and Poincareurface of section

niques to modify the behavior of biological systeff$ We Consider an autonomous systéh®] defined as
address these questions by presenting the following results.

Z=G(Z,p), @
*Electronic address: ding@daffy.ccs.fau.edu where the dot denotes time derivativee R“"*, andp is a
TElectronic address: yang@gaston.ccs.fau.edu control parameter. Let=h(Z) denote a scalar observable
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where®(x)=1 for x>0 and®(x)=0 for x<0; € is the
distance parameter. Here the distance between two embed-

P, = P8P, ding vectors is computed using the max-norm, namely, the
/ distance equals the largest of the component differences.
- From the plot of lo€(N,€) versus log, we locate a linear
/\ A s scaling region for smaké and estimate the slope of the curve

over the linear region. This slope, denotBd™, is then
considered an estimate of the correlation dimen&§® of

! ' \ t the projection of the original attractor to time-dimensional
—1,, —f— 1. —| . embedding space. 1D, plotted as a function ofn,
Po-1 Pu ! reaches a plateau for a range of large enomgtalues, the

plateaued valud, is taken to be an estimate of the true
FIG. 1. Schematic illustration of interspike interval formation correlation dimensio, for the system. For a large enough
and the effect of parametric control. data set it is shown that the plateau onset occurs at the value
of m that is just aboveéd, [12].
function. Consider the plot of versust. We assume thatan ~ Numerical results in Sec. Il demonstrate that, when ap-
event occurs every time(t) upward(or downward crosses plied to the interspike interval time series, the above proce-
some predetermined thresholer x. (see Fig. 1 The times  dure yields a well-defined correlation dimensibg. Below

In between ther{—1)th andnth events are called interspike we consider how to relate this value Bf, to the dimension
intervals and are the variable of interest for our purpose. of the attractor in the original phase space.

Now we argue that this interspike interval time series
samples the dynamics of some Poincarap in the original
Z phase space. Specifically, at each upward crossing in the C. Correlation dimension of the original attractor
x versust plot, the conditiorx=h(Z)=x. is met. This con-
dition defines &-dimensional Poincarsurface of section in
the originalZ space. Thud,, is also the time between the
(n—1)th and thenth crossings of the section. Suppose we
parametrize this section bylkadimensional vectof). Then,
the successive crossings of the plane from a given directio
by a chaotic trajectory give rise to a Poincanap

Intuitively it is clear that, for a given threshold, the result-
ing interspike intervals miss some of the dynamical behavior
occurring away from the threshold. In this sense one cannot
get a full dynamics reconstruction from the interspike inter-
vals. However, as mentioned earlier, this shortcoming does
Aot prevent us from reliably estimating key dynamical in-
variants such as correlation dimension from interspike inter-
vals. In particular, the correlation dimension of the original

Qn=P(Qn-1.p). 2) phase-space attractor, deno§l, relates taD, as
Realizing that the interval, is uniquely determined by D9=D,+1. (6)
Qn_1, namely,
ln=®(Qn-1), (3)  This formula maybe heuristically justified as follows. Con-

sider two sets of dimensiordy; andd, in a w-dimensional
we can thus view, as a scalar measurement function of thespace. It is known that the dimension of the intersection
dynamical system defined by E€). If this measurement between the two sets is given by3]
function |, satisfies the genericity conditions of the embed-
ding theorems irf11], which is expected to be the case in
practice, then the dynamics on the Poincsmeface of sec- di=d;+d,—w.
tion can be reconstructed frolp using the delay embedding
technique[7]. An important characteristic of the recon-
structed dynamics is the attractor’s correlation dimension inff we identify the original attractor’'s dimension as

troduced below. d,=DY, the dimension of the Poincaseirface of section as
d,=k, and the dimension of the entire phase space as
B. Definition of correlation dimension w=Kk+ 1, then the dimension of the intersection set, which is

what we measure from the interspike intervals, is

Let us denote the observed interspike interval time serie 2=di=D§+ K k— 1= Dzo—l. Rearranging terms gives

as {Ii}iN=1. Using delay coordinates we reconstruct an

N . us Eq.(6).
m-dimensional vector as As an illustration of the above argument, take the example
Yo={l e me1slneme 2 L. (4) of a periodic orbit in the original phase space. Being a con-

tinuous curve, the dimension of this orbit is one. The corre-
sponding interspike intervals are also periodic. In the delay
reconstruction space we obtain a set of distinct points, the
N N dimension of which is zero. Clearly, this result agrees with
2 E E O(e—|yi—yil) (5) _Eq. (6). N_umerit_:al results on two chaotic_examples confirm-
N(N-1){=1 573 A ing the discussion above are presented in Sec. Ill.

The correlation integraC,,(N, €) [8] is defined as

Cm(N,e)=
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D. Chaos control algorithm only outline the main steps since the details of the derivation

In many cases of practical importance we are interestef}ave already been published elsewhdr). .
not only in characterizing the dynamics of the chaotic attrac- -6t T denote matrix transpose. Since the control is done
tor, but also in perturbing the system to obtain improvedPy changing the value gb at every threshold crossing, we
performance. The field dealing with the second aspect i§€€d to introduce a (8—1)-dimensional expanded phase

called controlling chaogl4,15. The key observation here is SPace

that embedded within a chaotic attractor are an infinite num-

ber of unstable periodic orbits. Depending on the need, one

can choose to stabilize any of these orbits by applying judi- T
- - Pn— o+ Pn-1)

ciously chosen controls to an accessible system parameter. n-m+2; Fn-1

Because the target orbit is part of the natural dynamics, the .
control is often achieved with small perturbations. [16,17 to accommodate both dynamical measurements

Our goal is to show that, with a properly chosen thresh-2nd parameter changes. Near an unstable fixed point
old, interspike intervals by threshold crossings preserve peY” =, ....I*,p*, ... p*), which we will focus on in
riodic orbit information and can be used to exact chaos conthis paper, the dynamics can be linearly approximated as
trol. In Fig. 1 we illustrate the effect of changing a control - -
parameter denoted by, around its nominal valug@*, at Yo=Y =A(Y,—Y*)+B(py—p*), (7)
each crossing of the threshold. Next we proceed to formulate
a systematic control law for the parameter variations. Wewhere

Yo=Un-m+1ln-m+2s - - - lnsPn-m+1,

0 1 0 0 0 0
0

0 0 1 0 0 0 0

An-1 am-2 g bp-1 b, by b
A=| o 0 0o 1 0 o0 oB=|

0

0 0 0 1
0

0 0 0 1

0 o --- 0 O --- 0 0 (2m-1)x1

(2m-1)x(2m—1)

In the above matriceq; andb; are coefficients to be esti- only need to obtaira;’'s andb;’s for use in the control law.

mated from the time series. Now we wish to argue that even in cases where we have
To control we apply a suitable perturbation access to the continuous-time series it is useful to convert it

dpn=pn—p*, following each measuremeht, to keep the to a train of interspike intervals before doing delay embed-

dynamics within the stable subspace of the linear mappinging reconstruction.

Eqg. (7). For a fixed point withu unstable directions, the A common way of sampling a continuous-time series is to

control law governing the choice @p,, is derived to bd16]  make measurements at equally spaced time intervals. The
dynamics is then reconstructed using delay coordinates. If

u (N we desire to base our control algorithm on some Poincare

Spa=—| > U Ve | 8Yn,  (®  map in the reconstructed phase space, then, to obtain the
=1 (Vlg) H (A= \) surface of section, we need to choose a hyperplane in the

i=1i#k ' reconstructed phase space as illustrated in Fig. 2. An imme-

_ diate problem is that since the sampled trajectory is discrete
where\, are the unstable eigenvalues Af ordered in de- it inevitably misses the exact intersection with the chosen
scending absolute value, and the contravariant unstableyperplane. Often interpolation is needed to find the inter-
eigenvectors, are defined bﬁTvkz AV . It can be shown section poi,nt. This procedure introduces errors in the result-
that the elements of, are U(ki)zzgzlam_jﬂ)\;(—i—l for ing Poincaremap. Clearly, such errors can be avqided usjng
i<m, v(km)=l, andUﬁl)ZEE;Tbmfj+1)\f<+m_l_l for i>m a threshold QeV|ce _to c_onvert preqsely the continuous-time
[16]. series to an interspike interval series.

We emphasize that the above control Iaw_ls b_ased on time IIl. NUMERICAL RESULTS
series generated by a discrete map. Interspike intervals natu-
rally satisfy this condition. This feature removes the need to Equipped with the theoretical tools prepared in the pre-
estimate a full matrix of elements from data. Instead, weceding section, we proceed to demonstrate the following two
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FIG. 2. Schematic illustration showing the error in the Poincare

IRRAERS
map introduced by interpolation in the reconstruction space when '20.20 -15 _1'0 -5 0
the time series is sampled at equally spaced internalB. and log,€
D,E are observed pointsC and F are linear interpolation points 2
that may not be the intersection points of the actual trajectory with
the section.

FIG. 4. log-log plot of correlation integrals using 20 000 inter-

spike intervals for the Lorenz attractor.

points on two examplegi) The correlation dimension is a

well-defined quantity for an interspike interval train and its

value can be related back to the dimension of the original The result of applying the control law E¢p) is shown in

chaotic attractor, andii) interspike intervals preserve peri- Fig. 5. Herem=2 andr is used as the control parameter.

odic orbit information and can be used for implementingrigure 5a) shows the interspike intervals before and after

chaos control. the onset of control. Figure (5) is the corresponding
continuous-time series. We remark that the stabilized peri-

A. Example 1: The Lorenz model odic orbit in this case is th&-y orbit in [19]. This orbit is
The L del i t ; fth symmetric with respect to the transformatier->—x and
€ Lorénz model IS an autonomous system ot thre — —y. Strictly speaking, every repetition of this orbit in the
coupled ordinary differential equations

5(= —oX+oy,

cont&ol on
y=—Xxz+rx—y, @ 1

z=xy—bz, 0.9

In
wherer, o, andb are parameters. Lore28] showed that, 07
whenr =r* =28, c=10, andb=_8/3, the above system ex- '
hibits a chaotic attractor. Figure 3 shows thegariable as a
function of time. Letz,=27 be the threshold. Using a time

0.5 . . . :
series of 20 000 interspike intervals we compute the correla- 0 200 400 600 800 1000
tion integrals according to E@5). The result is displayed in n
Fig. 4. From Fig. 4 we estimate the correlation dimension to
be D,=1.06. By adding one to this value we obtain the
well-known dimension of the Lorenz attractbl‘2)=2.06[8].
control on
(b) 45 ¥
45
35 -
35 -
LA LRI -
Z 25 \} Z
v VLUV \}W
15 -
5 . . . -
5 ; ; . . 0 3 6 9 12 15
0 2 4 6 8 10 t

't

FIG. 5. Control result based on interspike intervals for the
FIG. 3. Continuoug time series from the Lorenz attractor. Lorenz system.
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2 cont&ol on

(a) 6

L

0 : . : :
t 0 200 400 600 800 1000
n

FIG. 6. Continuoux=Xx;+ X, time series for the coupled Duf-

fing oscillator.
9 cont‘gol on

original phase space corresponds to two oscillations in the (b) 2
z variable. Because of the symmetry we are able to treat it as
a fixed point in the interspike interval time series. 11 /M AA /\ A
B. Example 2: The coupled Duffing oscillator X 0

Consider the following five-dimensional system of two 14

coupled driven Duffing oscillatorisl 6]:
Xy yX1+ (G = Xq) + B1(Xy = Xp) = pysin(wt), 0 10 20 30 40 50 60
9 t

Xo+ YXo+ a(X3—X2) + Ba(Xa—Xq) = psin( wt).

For y=0.632, a=4.0, 8;=0.1, B,=0.05, ©=2.1235,
p.1=1.011, andp=p* =p,, Eq. (9) exhibits a chaotic attrac- FIG. 8. Control result based on interspike intervals for the
tor of dimensiorD$=3.3[16]. Suppose that the continuous- coupled Duffing oscillator.
time series we monitor here is=x;+X,, shown in Fig. 6.
We choose the threshold to kg=0. Using a time series of control the same orbit based on interspike intervals. The re-
50 000 interspike intervals we compute the correlation intesult is shown in Fig. 8, wheren=4 andp is used as the
grals according to Eq5). The result is displayed in Fig. 7. control parameter. We note that the periodic orbit stabilized
From the figure we estimate the correlation dimension to béas two unstable directions. FiguréBshows the interspike
D,=2.3. By adding one to this value we obtain the value ofintervals before and after we apply the control law ER).
the original phase-space attracif=3.3. The corresponding continuous time series is displayed in Fig.
For a periodically forced system it is common to sample8(b).
the dynamics every period of the driving to obtain a Poincare
map. The gontrol o.f an unstable.perlod—one orbit with this V. CONCLUSION
stroboscopic sampling was done[it6]. Here we attempt to
We have considered point processes generated by thresh-
old crossings in deterministic chaotic systems. We have
shown that the correlation dimension, as a global measure of
the dynamics, is well defined for interspike intervals and can
be estimated reliably in ideal situations where the data set is
large and relatively noise free. In addition, by relating the
interspike intervals to the times between successive crossings
of some Poincarsurface of section, we have established the
connection between the correlation dimension from the inter-
spike intervals and that of the original chaotic attractor. At a
local level we have demonstrated that specific periodic orbit
information is preserved by interspike intervals and this in-
formation can be used to achieve chaos control.

log,Cy, (N,€)

log,€
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